跳转至

复变函数 第2次作业

Chasse_neige

第二章习题 初等函数与多值函数

1.请证明下列等式

(b) $$ \sin(z_1 + z_2) = \sin z_1 \cos z_2 + \cos z_1 \sin z_2 $$ $$ \cos(z_1 + z_2) = \cos z_1 \cos z_2 - \sin z_1 \sin z_2 $$

证明

\[ \begin{aligned} \sin(z_{1} + z_{2}) &= \frac{e^{i (z_{1} + z_{2})} - e^{-i (z_{1} + z_{2})}}{2i} \\\\ &= \frac{(e^{i z_{1}} + e^{-i z_{1}}) (e^{i z_{2}} - e^{-i z_{2}}) + (e^{i z_{1}} - e^{-i z_{1}})(e^{i z_{2}} + e^{-i z_{2}})}{4i} \\\\ &= \frac{e^{i z_{1}} + e^{-i z_{1}}}{2} \frac{e^{i z_{2}} - e^{-i z_{2}}}{2i} + \frac{e^{i z_{1}} - e^{-i z_{1}}}{2i} \frac{e^{i z_{2}} + e^{-i z_{2}}}{2} \\\\ &= \sin z_1 \cos z_2 + \cos z_1 \sin z_2 \end{aligned} \]
\[ \begin{aligned} \cos (z_{1} + z_{2}) &= \frac{e^{i (z_{1} + z_{2})} + e^{-i (z_{1} + z_{2})}}{2} \\\\ &= \frac{(e^{i z_{1}} + e^{-i z_{1}}) (e^{i z_{2}} + e^{-i z_{2}}) + (e^{i z_{1}} - e^{-i z_{1}})(e^{i z_{2}} - e^{-i z_{2}})}{4} \\\\ &= \frac{e^{i z_{1}} + e^{-i z_{1}}}{2} \frac{e^{i z_{2}} + e^{-i z_{2}}}{2} - \frac{e^{i z_{1}} - e^{-i z_{1}}}{2i} \frac{e^{i z_{2}} - e^{-i z_{2}}}{2i} \\\\ &= \cos z_1 \cos z_2 - \sin z_1 \sin z_2 \end{aligned} \]

(d)

\[ \cosh^2 z - \sinh^2 z = 1, \quad 1 - \tanh^2 z = \text{sech}^2 z \]

证明 $$ \begin{aligned} \cosh^{2} z - \sinh^{2} z &= \left(\frac{e^{z} + e^{-z}}{2}\right)^{2} - \left(\frac{e^{z} - e^{-z}}{2}\right)^{2} \\ &= \frac{e^{2z} + e^{-2z} + 2}{4} - \frac{e^{2z} + e^{-2z} - 2}{4} = 1 \end{aligned} $$

\[ 1 - \tanh^{2} z = 1 - \frac{\sinh^{2} z}{\cosh^{2} z} = \frac{\cosh^{2} z - \sinh^{2} z}{\cosh^{2} z} = \frac{1}{\cosh^{2} z} = \text{sech}^{2} z \]

(f) $$ \frac{d}{dz} \sinh z = \cosh z, \quad \frac{d}{dz} \cosh z = \sinh z $$

证明

\[ \frac{d}{dz} \sinh z = \frac{d}{dz} \frac{e^{z} - e^{-z}}{2} = \frac{e^{z} + e^{-z}}{2} = \cosh z \]
\[ \frac{d}{dz} \cosh z = \frac{d}{dz} \frac{e^{z} + e^{-z}}{2} = \frac{e^{z} - e^{-z}}{2} = \sinh z \]

2.请证明不等式 (\(x\)\(y\) 均为实数) $$ |\sinh y| \leq |\sin(x + iy)| \leq |\cosh y| $$

\[ |\sinh y| \leq |\cos(x + iy)| \leq |\cosh y| \]

证明 $$ \sin (x + iy) = \sin x \cosh y + i \cos x \sinh y $$

\[ |\sin (x + iy)| = \sqrt{\sin^{2} x \cosh^{2} y + \cos^{2} x \sinh^{2} y} \]
\[ \begin{aligned} &\sqrt{\sin^{2} x \cosh^{2} y + \cos^{2} x \sinh^{2} y} \\\\ =& \sqrt{\sin^{2} x \cosh^{2} y + \cos^{2} x (\cosh^{2} y - 1)} \\\\ =& \sqrt{\cosh^{2} y - \cos^{2} x} \leq |\cosh y| \end{aligned} \]
\[ \begin{aligned} &\sqrt{\sin^{2} x \cosh^{2} y + \cos^{2} x \sinh^{2} y} \\\\ &= \sqrt{\sin^{2} x (1 + \sinh^{2} y) + \cos^{2} x \sinh^{2} y} \\\\ &= \sqrt{\sin^{2} x + \sinh^{2} y} \geq |\sinh y| \end{aligned} \]
\[ \therefore \,\, |\sinh y| \leq |\sin(x + iy)| \leq |\cosh y| \]
\[ \cos (x + iy) = \cos x \cosh y - i \sin x \sinh y \]
\[ |\cos (x + iy)| = \sqrt{\cos^{2} x \cosh^{2} y + \sin^{2} x \sinh^{2} y} \]
\[ \begin{aligned} &\sqrt{\cos^{2} x \cosh^{2} y + \sin^{2} x \sinh^{2} y} \\\\ &= \sqrt{\cos^{2} x \cosh^{2} y + \sin^{2} x (\cosh^{2} y - 1)} \\\\ &= \sqrt{\cosh^{2} y - \sin^{2} x} \leq |\cosh y| \end{aligned} \]
\[ \begin{aligned} &\sqrt{\cos^{2} x \cosh^{2} y + \sin^{2} x \sinh^{2} y} \\\\ &= \sqrt{\cos^{2} x (1 + \sinh^{2} y) + \sin^{2} x \sinh^{2} y} \\\\ &=\sqrt{\cos^{2} x + \sinh^{2} y} \geq |\sinh y| \end{aligned} \]
\[ \therefore \,\, |\sinh y| \leq |\cos(x + iy)| \leq |\cosh y| \]

4.判断下列函数是否为多值函数, 若为多值函数, 请分析其支点的情况

(1) \(\sqrt{1 - z^3}\)

是多值函数

可能支点:\(z = 1, z = - \frac{1}{2} + \frac{\sqrt{3}}{2} i, - \frac{1}{2} - \frac{\sqrt{3}}{2} i, z = \infty\)

判断

  1. \(z=1\):此时\(z\)绕行一圈后\(w\) 的辐角变化\(\pi\),是支点
  2. \(z = - \frac{1}{2} + \frac{\sqrt{3}}{2} i\):此时\(z\)绕行一圈后\(w\) 的辐角变化\(\pi\),是支点
  3. \(z = - \frac{1}{2} - \frac{\sqrt{3}}{2} i\):此时\(z\)绕行一圈后\(w\) 的辐角变化\(\pi\),是支点
  4. 无穷远点:此时\(z\)绕行一圈后\(w\) 的辐角变化\(3 \pi\),是支点

(2) \(\sqrt[3]{z^2 - 1}\)

是多值函数

可能支点:\(z = 1, z = -1, z = \infty\)

判断

  1. \(z = 1\):此时\(z\)绕行一圈后\(w\) 的辐角变化\(\frac{2}{3} \pi\),是支点
  2. \(z = - 1\):此时\(z\)绕行一圈后\(w\) 的辐角变化\(\frac{2}{3} \pi\),是支点
  3. 无穷远点:此时\(z\)绕行一圈后\(w\) 的辐角变化\(\frac{4}{3} \pi\),是支点

(3) \(\sqrt{\cos z}\)

是多值函数

可能支点:\(\cos z = 0\),即 \(z = \frac{\pi}{2} + k \pi\)

判断

\(z = \frac{\pi}{2} + k \pi \quad (k \in \mathbb{Z})\):此时\(z\)绕行一圈后\(w\) 的辐角变化\(\pi\),是支点