跳转至

复变函数 第4次作业

Chasse_neige

2.请计算如下积分

(1) $$ \int_{|z|=1} \frac{\text{d}z}{z} $$

\[ \int_{|z| = 1} \frac{d z}{z} = 2 \pi i \]

(2) $$ \int_{|z|=1} \frac{\text{d}z}{|z|} $$

\[ \int_{|z| = 1} \frac{d z}{|z|} = \int_{|z| = 1} d z = 0 \]

(3) $$ \int_{|z|=1} \frac{|\text{d}z|}{z} $$

\[ \int_{|z| = 1} \frac{|d z|}{z} = \int_{|z| = 1} \frac{d \theta}{e^{i \theta}} = 0 \]

(4) $$ \int_{|z|=1} \left|\frac{\text{d}z}{z}\right| $$

\[ \int_{|z| = 1} \left| \frac{d z}{z} \right| = \int_{|z| = 1} d \theta = 2 \pi \]

5.计算下列积分

(1) $$ \oint_{|z|=2} \frac{\cos z}{z} \text{d}z $$

\[ \oint_{|z| = 2} \frac{\cos z}{z} d z = 2 \pi i \cos (0) = 2 \pi i \]

(2) $$ \oint_{|z|=2} \frac{\sin z}{z^2} \text{d}z $$

\[ \oint_{|z| = 2} \frac{\sin z}{z^{2}} d z = \frac{2 \pi i }{1 !} \sin' (0) = 2 \pi i \]

(3) $$ \oint_{|z|=2} \frac{\text{e}^z}{z^3} \text{d}z $$

\[ \oint_{|z| = 2} \frac{e^{z}}{z^{3}} d z = \frac{2 \pi i}{2!} e''^{0} = \pi i \]

(4) $$ \oint_{|z|=2} \frac{|z|\text{e}^z}{z^2} \text{d}z $$

\[ \oint_{|z| = 2} \frac{|z| e^{z}}{z^{2}} dz = 2 \oint_{|z| = 2} \frac{e^{z}}{z^{2}} d z = 2 \cdot 2 \pi i e'^{0} = 4 \pi i \]

6.对于什么样的 \(a\) 值,函数 $$ F(z) = \int_{z_0}^z \text{e}^z \left(\frac{1}{z} + \frac{a}{z^3}\right) \text{d}z $$

是单值的。 $$ \oint e^{z} \left( \frac{1}{z} + \frac{a}{z^{3}} \right) d z = 0 $$ 即可保证该函数的单值性

当环路内包括\(z = 0\) 时 $$ \oint e^{z} \left( \frac{1}{z} + \frac{a}{z^{3}} \right) d z = 2 \pi i(e^{0} + \frac{1}{2!} a e'^{0}) = 0 $$ 所以 \(a = -2\)

当环路内不包括 \(z = 0\) 时 $$ \oint e^{z} \left( \frac{1}{z} + \frac{a}{z^{3}} \right) d z = 0 + 0 = 0 $$ 综上,\(a = -2\)

8.设 \(f(z)\) 在一个包含圆域 \(|z| \leq R\) 的区域中解析,\(\zeta = r \text{e}^{\text{i}\theta}\) 为圆内一点,\(0 \leq r < R\),证明下式(Poisson 公式)成立 $$ f(\zeta) = \frac{1}{2\pi} \int_0^{2\pi} \frac{R^2 - r^2}{R^2 - 2Rr \cos(\theta - \phi) + r^2} f\left(R \text{e}^{\text{i}\phi}\right) \text{d} \phi $$ 证明:设\(z = R e^{i \phi}\)

\[ \begin{aligned} &\frac{1}{2\pi} \int_0^{2\pi} \frac{R^2 - r^2}{R^2 - 2Rr \cos(\theta - \phi) + r^2} f\left(R \text{e}^{\text{i}\phi}\right) \text{d} \phi \\\\ =& \frac{1}{2 \pi} \oint_{|z| = R} \frac{R^{2} - r^{2}}{|\zeta - z|^{2}} f (\zeta) \frac{1}{i z} d z \\\\ =& - i \frac{R^{2} - r^{2}}{2 \pi} \oint_{|z| = R} \frac{f (z)}{z (z- \zeta)(\frac{R^{2}}{z} - \frac{r^{2}}{\zeta})} dz \\\\ =& i \frac{R^{2} - r^{2}}{2 \pi} \oint_{|z| = R} \frac{ \frac{\zeta}{r^{2}} f (z)}{(z- \zeta)(z - \frac{R^{2}}{r^{2}} \zeta)} dz \\\\ =& i \frac{R^{2} - r^{2}}{2 \pi} \frac{\zeta}{r^{2}} \left( 2 \pi i \frac{f (\zeta)}{\zeta (1 - \frac{R^{2}}{r^{2}})} \right) = f (\zeta) \end{aligned} \]