跳转至

复变函数 第7次作业

Chasse_neige

1.将下列函数在指定点展开成 Taylor 级数, 并给出收敛半径

(e) $ \sec z $ 在 \(z = 0\) 展开

使用待定系数法 $$ \cos z = \sum_{n = 0}^{\infty} \frac{(-1)^{n}}{(2n)!} z^{2n} $$ 所以 $$ 1 = \sum_{l = 0}^{\infty} \sum_{k = 0}^{\infty} \frac{(-1)^{l}}{(2l)!} a_{2k} z^{2l + 2k} = \sum_{n = 0}^{\infty} \sum_{k = 0}^{n} \frac{(-1)^{n - k}}{(2(n - k))!} a_{2k} z^{2n} $$ 所以 $$ \begin{aligned} \sum_{k = 0}^{n} \frac{(-1)^{n - k}}{(2(n - k))!} a_{2k} &= \begin{cases} 1 \qquad (n = 0) \\ 0 \qquad (n \neq 0) \end{cases} \end{aligned} $$

\[ a_{0} = 1 \]

Taylor 系数可以通过一下递推式得出 $$ a_{2n} = \sum_{k = 0}^{n - 1} \frac{(-1)^{n - k + 1}}{(2 (n - k))!} a_{2k} $$ 前几项为 $$ a_{0} = 1, a_{2} = \frac{1}{2}, a_{4} = \frac{5}{24}, a_{6} = \frac{61}{720} $$ 收敛半径为 $ \frac{\pi}{2} $

2.将下列函数在指定点展开成 Taylor 级数, 并给出收敛半径

(b) 将 $$ \ln \frac{1 + z}{1 - z} $$ 在 \(z = \infty\) 展开

支点为 \(z = 1\)\(z = -1\)

假设割线为从 \(z = 1\) 沿 \(x\) 方向延伸到无穷远,在从 \(-x\) 方向从无穷远延伸到 \(z = -1\) ,并且在割线上岸 \(\arg (\frac{1 + z}{1 - z}) = \pi\) $$ \ln (1 + z) = \sum_{n = 1}^{\infty} \frac{(-1)^{n + 1}}{n} z^{n} $$

\[ \ln (1 - z) = - \sum_{n = 1}^{\infty} \frac{1}{n} z^{n} \]

所以 $$ \ln \frac{1 + z}{1 - z} = \sum_{n = 0}^{\infty} \frac{2}{2n + 1} z^{2n + 1} $$ 收敛半径为 \(1\)

(c) 将 $$ \sqrt{\frac{1-z}{1+z}} $$ 在 \(z = 0\) 以及 \(z = \infty\) 处展开

\(z = 0\)

支点为 \(z = 1\)\(z = -1\)

假设割线为从 \(z = 1\) 沿 \(x\) 方向延伸到无穷远,在从 \(-x\) 方向从无穷远延伸到 \(z = -1\) ,并且在割线上岸 \(\arg (\frac{1 - z}{1 + z}) = - \pi\) $$ \begin{aligned} \sqrt{\frac{1-z}{1+z}} &= (1 - z) (1 - z^{2})^{- \frac{1}{2}} = (1 - z) \sum_{n = 0}^{\infty} (-1)^{n} \begin{pmatrix} n \\ - \frac{1}{2} \end{pmatrix} z^{2n} &= \sum_{n = 0}^{\infty} (-1)^{n} \begin{pmatrix} n \\ - \frac{1}{2} \end{pmatrix} (z^{2n} - z^{2n + 1}) \end{aligned} $$ 收敛半径为 \(1\)

\(z = \infty\)

支点为 \(z = 1\)\(z = -1\)

割线为从 \(z = -1\)\(z = 1\) 沿 \(x\) 轴的连线,并且在割线上岸 \(\arg (\frac{1 - z}{1 + z}) = 0\) $$ \begin{aligned} \sqrt{\frac{1-z}{1+z}} &= \sqrt{\frac{\frac{1}{z} - 1}{\frac{1}{z} + 1}} = i (\frac{1}{z} - 1) (1 - \frac{1}{z^{2}})^{- \frac{1}{2}} = i (\frac{1}{z} - 1) \sum_{n = 0}^{\infty} (-1)^{n} \begin{pmatrix} n \\ - \frac{1}{2} \end{pmatrix} \frac{1}{z}^{2n} \\ &= i \sum_{n = 0}^{\infty} (-1)^{n} \begin{pmatrix} n \\ - \frac{1}{2} \end{pmatrix} (\frac{1}{z}^{2n + 1} - \frac{1}{z}^{2n}) \end{aligned} $$ 收敛半径为 \(\left|\frac{1}{z}\right| < 1\)

(d) 将
$$ \frac{z^{(1-p)}(1-z)^p}{2z} $$ 在 \(z = \infty\) 处展开,其中 $ -1 < p < 2 $

支点为 \(z = 0\)\(z = 1\)

划分割线为从 \(z = 0\) 沿着 \(x\) 轴指向 \(z = 1\) 的连线,并且在割线上岸 \(\arg \frac{1 - z}{z} = 0\) $$ \begin{aligned} \frac{(1 - z)^{p}}{2 z^{p}} &= e^{-i p \pi} \frac{1}{2} \sum_{n = 0}^{\infty} (-1)^{n} \begin{pmatrix} n \\ p \end{pmatrix} \frac{1}{z}^{n} &= e^{-i p \pi} \sum_{n = 0}^{\infty} \frac{(-1)^{n}}{2} \begin{pmatrix} n \\ p \end{pmatrix} \frac{1}{z}^{n} \end{aligned} $$ 收敛半径为 \(\left|\frac{1}{z}\right| < 1\)

3.验证等式
$$ \sum_{n=0}^\infty \frac{(-1)^n}{a + nb} = \int_0^1 \frac{t^{a-1}}{1 + t^b} dt, \quad a, b > 0 $$

证明 $$ \begin{aligned} \int_0^1 \frac{t^{a-1}}{1 + t^b} dt &= \int_{0}^{1} \sum_{n = 0}^{\infty} (-1)^{n} t^{nb + a - 1} dt \\ &= \sum_{n = 0}^{\infty} \int_{0}^{1} (-1)^{n} t^{nb + a - 1} dt = \sum_{n=0}^\infty \frac{(-1)^n}{a + nb} \end{aligned} $$ 据此求出以下级数之和:

(a)
$$ 1 - \frac{1}{4} + \frac{1}{7} - \frac{1}{10} + \cdots $$

\[ \sum_{n = 0}^{\infty} \frac{(-1)^{n}}{1 + 3n} = \int_{0}^{1} \frac{1}{1 + t^{3}} dt = \frac{\sqrt{3} \pi + \ln 8}{9} \]

(b)
$$ \frac{1}{2} - \frac{1}{5} + \frac{1}{8} - \frac{1}{11} + \cdots $$

\[ \sum_{n = 0}^{\infty} \frac{(-1)^{n}}{2 + 3n} = \int_{0}^{1} \frac{t}{1 + t^{3}} dt = \frac{\sqrt{3} \pi - \ln{8}}{9} \]

(c)
$$ 1 - \frac{1}{5} + \frac{1}{9} - \frac{1}{13} + \cdots $$

\[ \sum_{n = 0}^{\infty} \frac{(-1)^{n}}{1 + 4n} = \int_{0}^{1} \frac{1}{1 + t^{4}} dt = \frac{\pi + 2\coth^{-1} (\sqrt{2}) }{4 \sqrt{2}} \]