高等微积分(2) 第10次作业
Chasse_neige
1
定义曲面 \(S\) 为
$$
S = {(x, y, z) \mid x^2 + y^2 \leq 1, x + y + z = 1}
$$
取指向 \(z\) 轴正方向的定向(或者用课本上的术语,选定了曲面的上侧)
(1) 计算第二型曲面积分
$$
\iint_S x^2 \, dy \, dz + y^2 \, dz \, dx + z^2 \, dx \, dy
$$
利用 \(x, y\) 对原曲面进行参数化,则第二型曲面积分简化为
$$
\begin{aligned}
\iint_S x^2 \, dy \, dz + y^2 \, dz \, dx + z^2 \, dx \, dy &= \iint_{D} ((1 - x - y)^{2}, y^{2}, x^{2}) \cdot ((1, 0, -1) \times (0, 1, -1)) dx \, dy \\
&= \iint_{D} ((1 - x - y)^{2}, y^{2}, x^{2}) \cdot (1, 1, 1) dx \, dy = \iint_{D} (1 + 2 x^{2} + 2 y^{2} - 2x - 2y + 2xy) dx \, dy \\
&= \pi + \pi - 0 = 2 \pi
\end{aligned}
$$
(2) 设 \(S\) 的边界为 \(\partial S\),赋予边界的正定向。计算第二型曲线积分
$$
\int_{\partial S} z^2 \, dx + x^2 \, dy + y^2 \, dz
$$
同样使用参数化 \(z = 1 - x - y, x = \cos \theta, y = \sin \theta\) ,则第二型曲面积分化为
$$
\begin{aligned}
\int_{\partial S} z^2 \, dx + x^2 \, dy + y^2 \, dz &= \int_{0}^{2 \pi} ((1 - x - y)^{2}, x^{2}, y^{2}) \cdot (- \sin \theta, \cos \theta, \sin \theta - \cos \theta) d \theta \\
&= \int_{0}^{2 \pi} (- (1 - \cos \theta - \sin \theta)^{2} \sin \theta + \cos^{3} \theta + \sin^{3} \theta - \cos \theta \sin^{2} \theta) d \theta = 2 \pi
\end{aligned}
$$
2
设 \(C \subset \mathbb{R}^2\) 是光滑的闭曲线,取逆时针方向(定向)。假设 \((0, 0) \notin C\),计算第二型曲线积分
$$
\oint_C \frac{-(x^2 y + y^3) \, dx + (x^3 + x y^2) \, dy}{(x^2 + y^2)^2}
$$
由于\(C \subset \mathbb{R}^2\) 是光滑的闭曲线,所以 \(C\) 可以参数化。假设
$$
\begin{aligned}
x &= x (t) \\
y &= y (t)
\end{aligned}
$$
其中 \(t \in [0,1]\) 是一个参数化
注意到 $$ \left(\arctan (\frac{y}{x}) \right)' = \frac{- yx' + xy'}{x^{2} + y^{2}} = \frac{-(x^2 y + y^3) x' + (x^3 + x y^2) y'}{(x^2 + y^2)^2} $$ 则第二型曲线积分化为 $$ \begin{aligned} \oint_C \frac{-(x^2 y + y^3) \, dx + (x^3 + x y^2) \, dy}{(x^2 + y^2)^2} &= \int_{0}^{1} \frac{-(x^2 y + y^3) x' + (x^3 + x y^2) y'}{(x^2 + y^2)^2} dt = \int_{0}^{1} \left(\arctan (\frac{y}{x}) \right)' dt \\ &= \begin{cases} 0 \qquad (\text{原点不在曲线内}) \\ 2 \pi \qquad (\text{原点在曲线内}) \end{cases} \end{aligned} $$ 第3 题需要用到如下事实:设 \(f\) 在矩形区域 \([a, b] \times [c, d]\) 上连续,且有连续的偏导函数 \(\frac{\partial f}{\partial x}\)。对每个 \(x \in [a, b]\),定义函数 \(g(x) = \int_c^d f(x, y) \, dy\),则有 \(g'(x) = \int_c^d \frac{\partial f(x,y)}{\partial x} \, dy\)。
3
给定\((x_0, y_0) \in \mathbb{R}^2\)。对于正数 \(r\),令 \(C(r) = \{(x, y) \mid (x - x_0)^2 + (y - y_0)^2 = r^2\}\)。设\(f\) 在区域 \(D(R) = \{(x, y) \mid (x - x_0)^2 + (y - y_0)^2 \leq R^2\}\) 上是光滑函数,定义函数\(g(r)\) 为如下的第一型曲线积分
$$
g(r) = \frac{1}{2\pi r} \int_{C(r)} f(x, y) \, ds, \quad \forall 0 < r \leq R,
$$
其中 \(ds\) 表示弧长微元。
(1) 利用前述事实,证明:对任何 \(0 < r \leq R\),有
$$
g'(r) = \frac{1}{2\pi r} \int_{C(r)} -f_y(x,y) \, dx + f_x(x,y) \, dy
$$
其中 \(C(r)\) 取逆时针定向。
证明
第一型曲线积分 $$ g(r) = \frac{1}{2\pi r} \int_{C(r)} f(x, y) \, ds = \frac{1}{2 \pi r} \int_{C (r)} f (x_{0} + r \cos \theta, y_{0} + r \sin \theta) r d \theta $$
(2) 设 \(x_0^2 + y_0^2 > R^2\)。计算 \(\frac{1}{2\pi R} \int_{C(R)} \ln(x^2 + y^2) \, ds\)。
$$
g (r) = \frac{1}{2\pi r} \int_{C(r)} \ln(x^2 + y^2) \, ds
$$
利用2的结论,由于原点不在 \(C (r)\) 内
$$
g' (r) = \frac{1}{2 \pi r} \int_{C (r)} - \frac{2 y }{x^{2} + y^{2}} dx + \frac{2x}{x^{2} + y^{2}} dy = 0
$$
所以
$$
g (R) = \lim_{r \to 0} \frac{1}{2\pi r} \int_{C(r)} \ln(x^2 + y^2) \, ds = \ln (x_{0}^{2} + y_{0}^{2})
$$
4
设 \(S = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}\) 是单位球面,取指向外面的定向。对给定的非负整数 \(k\),计算第二型曲面积分
$$
\iint_S z^k (x \, dy \, dz + y \, dz \, dx + z \, dx \, dy) \quad \text{或等价的} \quad \iint_S z^k (x \, dy \wedge dz + y \, dz \wedge dx + z \, dx \wedge dy)
$$
选取球坐标作为参数化
$$
\begin{aligned}
x &= \sin \theta \cos \phi \\
y &= \sin \theta \sin \phi \\
z &= \cos \theta
\end{aligned}
$$
上半球
所以整个球面积分为 $$ \begin{aligned} \iint_S z^k (x \, dy \, dz + y \, dz \, dx + z \, dx \, dy) &= \begin{cases} 0 \qquad (\text{n为偶数}) \\ \frac{4 \pi}{k + 1} \qquad (\text{n为奇数}) \end{cases} \end{aligned} $$
5
设 \(S\) 为曲面
$$
(x-1)^2 + y^2 + z^2 = 2,
$$
取指向外面的定向。计算第二型曲面积分
$$
\iint_S \frac{x \, dy \, dz + y \, dz \, dx + z \, dx \, dy}{(x^2 + y^2 + z^2)^{3/2}}
$$
$$
\iint_S \frac{x \, dy \, dz + y \, dz \, dx + z \, dx \, dy}{(x^2 + y^2 + z^2)^{3/2}} = \iint_{S} \frac{\vec{r}}{r^{3}} \cdot d \vec{S}
$$
利用 Gauss 定理 $$ \iint_{S‘} \frac{\vec{r}}{r^{3}} \cdot d \vec{S} = \iiint_{V’} \nabla \cdot \frac{\vec{r}}{r^{3}} d v = 0 \qquad (0 \notin S') $$ 取 \(S' = \{ (x - 1)^{2} + y^{2}+ z^{2} = 2, x^{2} + y^{2} + z^{2} = 0.1 \}\)
所以 $$ \iint_S \frac{x \, dy \, dz + y \, dz \, dx + z \, dx \, dy}{(x^2 + y^2 + z^2)^{3/2}} = \iint_{x^{2} + y^{2} + z^{2} = 0.1} \frac{x \, dy \, dz + y \, dz \, dx + z \, dx \, dy}{(x^2 + y^2 + z^2)^{3/2}} = 4 \pi $$
6
设 \(S \subseteq \mathbb{R}^3\) 是 \(C^1\) 光滑的闭曲面,取指向外面的定向(或用课本上的术语,\(S\) 是它所围成区域的外侧面),\((0, 0, 0) \notin S\)。计算第二型曲面积分
$$
\iint_S \frac{x \, dy \, dz + y \, dz \, dx + z \, dx \, dy}{(a^2 x^2 + b^2 y^2 + c^2 z^2)^{3/2}}
$$
其中 \(a, b, c\) 是给定的正数。
同样使用 Gauss 定理 $$ \begin{aligned} &\nabla \cdot \frac{(x, y, z)}{(a^{2} x^{2} + b^{2}y^{2} + c^{2} z^{2})^\frac{3}{2}} =\\ & \frac{1}{(a^{2} x^{2} + b^{2}y^{2} + c^{2} z^{2})^{3}} ((a^{2} x^{2} + b^{2}y^{2} + c^{2} z^{2})^\frac{3}{2} - 3 (a^{2} x^{2} + b^{2}y^{2} + c^{2} z^{2})^\frac{1}{2} a x^{2} \\ &+ (a^{2} x^{2} + b^{2}y^{2} + c^{2} z^{2})^\frac{3}{2} - 3 (a^{2} x^{2} + b^{2}y^{2} + c^{2} z^{2})^\frac{1}{2} b y^{2} \\ &+ (a^{2} x^{2} + b^{2}y^{2} + c^{2} z^{2})^\frac{3}{2} - 3 (a^{2} x^{2} + b^{2}y^{2} + c^{2} z^{2})^\frac{1}{2} c z^{2}) = 0 \qquad (0 \notin S) \end{aligned} $$ 所以 $$ \iint_S \frac{x \, dy \, dz + y \, dz \, dx + z \, dx \, dy}{(a^2 x^2 + b^2 y^2 + c^2 z^2)^{3/2}} = \iiint_{V} \nabla \cdot \frac{(x, y, z)}{(a^{2} x^{2} + b^{2}y^{2} + c^{2} z^{2})^\frac{3}{2}}d v = 0 $$
7
设 \(S \subseteq \mathbb{R}^3\) 是封闭的光滑曲面,\(V\) 是由 \(S\) 围成的三维有界闭区域(称之为 \(S\) 的内部)。设 \(f(x, y, z), P(x, y, z), Q(x, y, z), R(x, y, z)\) 都是 \(V\) 上的 \(C^1\) 光滑函数,且 \(P, Q, R\) 在 \(S\) 上恒等于 0。证明:
$$
\iiint_V \left( \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) e^{f(x, y, z)} \, dx \, dy \, dz = -\iiint_V \left( P \frac{\partial f}{\partial x} + Q \frac{\partial f}{\partial y} + R \frac{\partial f}{\partial z} \right) e^{f(x, y, z)} \, dx \, dy \, dz
$$
证明
因为\(P, Q, R\) 在 \(S\) 上恒等于 0,所以积分 $$ \iint_{S} P e^{f (x, y, z)} dy dz + Q e^{f (x, y, z)} dz dx + R e^{f (x, y, z)} dx dy = 0 $$ 利用 Gauss 定理 $$ \begin{aligned} &\iint_{S} P e^{f (x, y, z)} dy dz + Q e^{f (x, y, z)} dz dx + R e^{f (x, y, z)} dx dy \\ &= \iiint_{V} \frac{\partial}{\partial x} (P e^{f (x, y, z)}) + \frac{\partial}{\partial y} ( Q e^{f (x, y, z)}) + \frac{\partial}{\partial z} ( R e^{f (x, y, z)}) dx dy dz \\ &= \iiint_V \left( \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) e^{f(x, y, z)} \, dx \, dy \, dz + \iiint_V \left( P \frac{\partial f}{\partial x} + Q \frac{\partial f}{\partial y} + R \frac{\partial f}{\partial z} \right) e^{f(x, y, z)} \, dx \, dy \, dz = 0 \end{aligned} $$ 所以 $$ \iiint_V \left( \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) e^{f(x, y, z)} \, dx \, dy \, dz = -\iiint_V \left( P \frac{\partial f}{\partial x} + Q \frac{\partial f}{\partial y} + R \frac{\partial f}{\partial z} \right) e^{f(x, y, z)} \, dx \, dy \, dz $$
8
对于函数 \(f : \mathbb{R}^3 \to \mathbb{R}\),如果极限
$$
\lim_{M \to \infty} \iiint_{x^2 + y^2 + z^2 \leq M^2} f(x, y, z) \, dx \, dy \, dz
$$
存在, 则把上述极限记作
$$
\iiint_{\mathbb{R}^3} f(x,y,z) \, dx \, dy \, dz,
$$
称为 \(f\) 在 \(\mathbb{R}^3\) 上的无穷积分。
(1) 设 \(P, Q : \mathbb{R}^3 \to \mathbb{R}\) 是 \(C^1\) 光滑函数。证明:对正数 \(M\),有
$$
\iint_{\partial B} P(x,y,z) e^{Q(x,y,z)} \, dy \wedge dz = \iiint_B \left( \frac{\partial P}{\partial x} + P \frac{\partial Q}{\partial x} \right) e^{Q(x,y,z)} \, dV
$$
其中 \(B = \{(x,y,z) \mid x^2 + y^2 + z^2 \leq M^2\}\), \(\partial B\) 是 \(B\) 的边界,取指向外面的定向。
利用推导 Gauss 定理时 local model 的结果 $$ \begin{aligned} \iint_{\partial B} P(x,y,z) e^{Q(x,y,z)} \, dy \wedge dz &= \iiint_{B} \frac{\partial}{\partial x} ( P(x,y,z) e^{Q(x,y,z)}) dx \wedge dy \wedge dz \\ &= \iiint_B \left( \frac{\partial P}{\partial x} + P \frac{\partial Q}{\partial x} \right) e^{Q(x,y,z)} \, dV \end{aligned} $$
(2) 证明:对于三元多项式 \(P(x,y,z)\),有
$$
\iiint_{\mathbb{R}^3} \frac{\partial P}{\partial x} e^{-x^2 - y^2 - z^2} \, dx \, dy \, dz = 2 \iiint_{\mathbb{R}^3} x P(x,y,z) e^{-x^2 - y^2 - z^2} \, dx \, dy \, dz
$$
证明
取 \(f (x, y, z) = - (x^{2} + y^{2} + z^{2})\),上一小问结果化为 $$ \iint_{\partial B} P(x,y,z) e^{- (x^{2} + y^{2} + z^{2})} \, dy \wedge dz = \iiint_{B} \frac{\partial P}{\partial x} e^{-x^2 - y^2 - z^2} \, dx \, dy \, dz - 2 \iiint_{B} x P(x,y,z) e^{-x^2 - y^2 - z^2} \, dx \, dy \, dz $$ 取 \(B = \{(x, y, z)| x^{2} + y^{2} + z^{2} \leq R^{2} \}\) ,设 \(k\) 次多项式 \(P\) 在紧致集 \(\partial B\) 上的最大值为 \(M R^{k}\) $$ \forall \epsilon > 0, \exists R, s.t. \iint_{\partial B} P(x,y,z) e^{- (x^{2} + y^{2} + z^{2})} \, dy \wedge dz \leq 2 M R^{k} \pi R^{2} e^{- R^{2}} \leq \epsilon $$ 所以当 \(R \to \infty\) ,即 \(B \to \mathbb{R}^{3}\) 时 $$ \iiint_{B} \frac{\partial P}{\partial x} e^{-x^2 - y^2 - z^2} \, dx \, dy \, dz - 2 \iiint_{B} x P(x,y,z) e^{-x^2 - y^2 - z^2} \, dx \, dy \, dz \to 0 $$ 所以 $$ \iiint_{\mathbb{R}^3} \frac{\partial P}{\partial x} e^{-x^2 - y^2 - z^2} \, dx \, dy \, dz = 2 \iiint_{\mathbb{R}^3} x P(x,y,z) e^{-x^2 - y^2 - z^2} \, dx \, dy \, dz $$