跳转至

高等微积分 (2) 第六次作业

Chasse_neige

1

\(x, y, z\) 满足方程 \(x^3 + y^3 + z^3 + xyz = 4\).

(1) 证明: 在点 \((1, 1, 1)\) 附近, \(z\) 可以表示成 \(x, y\) 的隐函数.

证明:考虑该点处的偏导矩阵 $$ \frac{\partial F}{\partial z} \Bigg|_{(1, 1, 1)} = 3 z^{2} + xy = 4 \neq 0 $$ 所以隐函数存在

(2) 把上述隐函数记作 \(z = z(x, y)\), 求 \(\left. \dfrac{\partial z}{\partial x} \right|_{(1,1)}, \left. \dfrac{\partial z}{\partial y} \right|_{(1,1)}\)

\[ 3 x^{2} + 3 z^{2} \frac{\partial z}{\partial x} + yz + xy \frac{\partial z }{\partial x} = 0 \]

带入\((x,y) = (1,1)\)\(z = 1\)

\[ 3 + 3 \left. \frac{\partial z}{\partial x} \right\|\_{(1,1)} + 1 + \left. \frac{\partial z}{\partial x} \right\|\_{(1,1)} = 0 \]

所以

\[ \left. \dfrac{\partial z}{\partial x} \right|_{(1,1)} = -1 \]

同理

\[ 3 y^{2} + 3 z^{2} \frac{\partial z}{\partial y} + xz + xy \frac{\partial z}{\partial y} = 0 $$ 所以 $$ 3 + 3 \left. \dfrac{\partial z}{\partial y} \right|\_{(1,1)} + 1 + \left. \dfrac{\partial z}{\partial y} \right|\_{(1,1)} = 0 \]
\[ \left. \dfrac{\partial z}{\partial y} \right|_{(1,1)} = -1 \]

(3) 求 \(z(x, y)\)\((1, 1)\) 附近带皮亚诺余项的泰勒公式, 要求展开至二次项, 即要求余项形如 \(o \left( (\Delta x)^2 + (\Delta y)^2 \right)\).

二阶项 $$ \begin{aligned} \frac{\partial^{2} z}{\partial x^{2}} \Bigg|_{(1, 1)} &= - \frac{\partial}{\partial x} \left(\frac{3 x^{2} + yz}{3 z^{2} + xy} \right) = - \frac{(6 x + y \frac{\partial z}{\partial x}) (3 z^{2} + xy) - (3 x^{2} + yz) (6 z \frac{\partial z}{\partial x} + y)}{(3 z^{2} + xy)^{2}} \\ &= - \frac{5 \cdot 4 - 4 \cdot (-5)}{4^{2}} = - \frac{5}{2} \end{aligned} $$

\[ \begin{aligned} \frac{\partial^{2} z}{\partial y \partial x} &= - \frac{\partial}{\partial y} \left(\frac{3 x^{2} + yz}{3 z^{2} + xy} \right) = - \frac{(z + y \frac{\partial z}{\partial y}) (3 z^{2} + xy) - (3 x^{2} + yz) (6 z \frac{\partial z}{\partial y} + x)}{(3 z^{2} + xy)^{2}} \\\\ &= - \frac{0 - 4 \cdot (-5)}{4^{2}} = - \frac{5}{4} \end{aligned} \]
\[ \begin{aligned} \frac{\partial^{2} z}{\partial y^{2}} \Bigg|_{(1, 1)} &= - \frac{\partial}{\partial y} \left(\frac{3 y^{2} + xz}{3 z^{2} + xy} \right) = - \frac{(6 y + x \frac{\partial z}{\partial x}) (3 z^{2} + xy) - (3 y^{2} + xz) (6 z \frac{\partial z}{\partial x} + x)}{(3 z^{2} + xy)^{2}} \\\\ &= - \frac{5 \cdot 4 - 4 \cdot (-5)}{4^{2}} = - \frac{5}{2} \end{aligned} $$ 所以$z(x, y)$ 在 $(1, 1)$ 附近带皮亚诺余项的泰勒公式为 $$ z (x,y) = 1 - (x - 1)- (y - 1) - \frac{5}{4} (x - 1)^{2} - \frac{5}{4} (x - 1)(y - 1) - \frac{5}{4} (y - 1)^{2} + o (\Delta x^{2} + \Delta y^{2}) \]

2

\(f, g : \mathbb{R}^2 \rightarrow \mathbb{R}\) 的各个 2 阶偏导函数都存在且连续, \(g(x_0, y_0) = 0\), \(g_y(x_0, y_0) \neq 0\). 设方程 \(g(x, y) = 0\)\((x_0, y_0)\) 附近确定 \(C^2\) 光滑的隐函数 \(y = y(x)\). 定义函数 \(h : U \rightarrow \mathbb{R}\) 如下: $$ h(x) = f(x, y(x)), $$ 其中 \(U\)\(x_0\) 的某个邻域, \(y = y(x)\)\(U\) 中有定义.

(1) 求导函数 \(h'(x)\).

\[ h’ (x) = f_{1}' f_{2}' \frac{\partial y}{\partial x} \]

根据隐函数的性质

\[ \frac{\partial y}{\partial x} = - \frac{g_{x} (x_{0}, y_{0})}{g_{y} (x_{0}, y_{0})} \]

所以

$$ h'(x) = f_{1}' - f_{2}' \frac{g_{x} (x_{0}, y_{0})}{g_{y} (x_{0}, y_{0})} $$ (2) 求 2 阶导函数 \(h''(x)\).

\[ \begin{aligned} h(x)'' &= \frac{\partial}{\partial x} \left(f_{1}' (x, y (x)) + f_{2}' (x, y (x)) \frac{\partial y (x)}{\partial x} \right) \\\\ &= f_{11}'' + f_{21}'' \frac{\partial y}{\partial x} + f_{12}'' \frac{\partial y}{\partial x} + f_{22}'' (\frac{\partial y}{\partial x})^{2} + f_{2}' \frac{\partial^{2} y}{\partial x^{2}} \end{aligned} \]

带入\(\frac{\partial y}{\partial x} = - \frac{g_{x} (x_{0}, y_{0})}{g_{y} (x_{0}, y_{0})}\) 以及 \(\frac{\partial^{2} y}{\partial x^{2}} = - \frac{\partial}{\partial x} \frac{g_{x}}{g_{y}} = - \frac{g_{xx} g_{y} - g_{x} g_{xy}}{g_{y}^{2}}\)

得到 $$ h (x)'' = f_{11}'' - 2 f_{21}'' \frac{g_{x}}{g_{y}} + f_{22}'' (\frac{g_{x}}{g_{y}})^{2} + f_{2}' \frac{g_{x} g_{xy} - g_{xx} g_{y}}{g_{y}^{2}} $$

3

\(L : \mathbb{R}^2 \rightarrow \mathbb{R}\) 是给定的 \(C^2\) 光滑函数. 定义映射 \(\phi : \mathbb{R}^2 \rightarrow \mathbb{R}^2\) 为: $$ \phi(x, v) = \left( x, \dfrac{\partial L(x, v)}{\partial v} \right). $$

(1) 求 \(\phi\) 的 Jacobi 矩阵 \(J(\phi)_{(x, v)}\) $$ \begin{aligned} J (\phi)_{(x, \nu)} = \begin{pmatrix} \frac{\partial x}{\partial x} & \frac{\partial x}{\partial \nu} \\ \frac{\partial}{\partial x} \frac{\partial L (x, \nu)}{\partial \nu} & \frac{\partial}{\partial \nu} \frac{\partial L (x, \nu)}{\partial \nu} \end{pmatrix} \\ = \begin{pmatrix} 1 & 0 \\ \frac{\partial^{2} L (x, \nu)}{\partial x \partial \nu} & \frac{\partial^{2} L (x, \nu)}{\partial \nu^{2}} \end{pmatrix} \end{aligned} $$ (2) 证明: 如果 \(\dfrac{\partial^2 L(x, v)}{\partial v^2} \neq 0\), 则 \(\phi\)\((x, v)\) 附近有 \(C^1\) 光滑的逆映射. 以下我们假定 \(\phi\) 有整体的 \(C^1\) 光滑的逆 \(\phi^{-1}\), 并把它记作: $$ \phi^{-1}(q, p) = (x(q, p), v(q, p)), $$ 显然 \(x(q, p) = q\)

证明

由于\(\dfrac{\partial^2 L(x, v)}{\partial v^2} = 0\), 则 $$ \det J (\phi)_{(x, \nu)} = \frac{\partial^{2} L}{\partial v^{2}} \neq 0 $$ 所以 \(d f\) 存在逆 \(d^{-1} f\)

根据反函数定理,映射\(\phi\) 存在整体的 \(C^1\) 光滑的逆 \(\phi^{-1}\)

(3) 定义函数 \(H(q, p) = p \cdot v(q, p) - L(x(q, p), v(q, p))\), 计算 $$ \dfrac{\partial H}{\partial q}, \dfrac{\partial H}{\partial p} $$

\[ \frac{\partial H}{\partial q} = \frac{\partial}{\partial q} ( p \cdot v(q, p) - L(x(q, p), v(q, p))) = p \frac{\partial v}{\partial q} - \frac{\partial L}{\partial x} \frac{\partial x}{\partial q} - \frac{\partial L}{\partial v} \frac{\partial v}{\partial q} \]

带入 \(x = q, \quad p = \frac{\partial L}{\partial v}\) $$ \frac{\partial H}{\partial q} = - \frac{\partial L}{\partial x} $$

\[ \frac{\partial H}{\partial p} = \frac{\partial }{\partial p} ( p \cdot v(q, p) - L(x(q, p), v(q, p))) = v + p \frac{\partial v}{\partial p} - \frac{\partial L}{\partial x} \frac{\partial x}{\partial p} - \frac{\partial L}{\partial v} \frac{\partial v}{\partial p} = v \]

(4) 对于 \(C^1\) 光滑映射 \(\gamma : \mathbb{R} \rightarrow \mathbb{R}^2\), \(\gamma(t) = (x(t), v(t))\), 把复合映射 \(\phi \circ \gamma : \mathbb{R} \rightarrow \mathbb{R}^2\) 记作: $$ \phi \circ \gamma(t) = (q(t), p(t)). $$ 证明: \((x(t), v(t)\) 满足 Euler-Lagrange 方程 $$ \begin{aligned} \begin{cases} v(t) &= \dfrac{dx(t)}{dt} \\ \dfrac{d}{dt} \dfrac{\partial L(x(t), v(t))}{\partial v} &= \dfrac{\partial L(x(t), v(t))}{\partial x} \end{cases} \end{aligned} $$ 的充分必要条件是 \(q(t), p(t)\) 满足 Hamilton 方程 $$ \begin{aligned} \begin{cases} \dfrac{dq(t)}{dt} &= \dfrac{\partial H(q(t), p(t))}{\partial p} \\ \dfrac{dp(t)}{dt} &= -\dfrac{\partial H(q(t), p(t))}{\partial q} \end{cases} \end{aligned} $$

证明

充分性:假设满足哈密顿方程 $$ (x (t), \frac{\partial L}{\partial v} (t)) = \phi (x (t), v (t)) = (q (t), p (t)) $$ 所以 $$ \frac{d}{d t} p (t) = \frac{d}{d t} \frac{\partial L}{\partial v} = - \dfrac{\partial H}{\partial q} = \frac{\partial L}{\partial x} $$ 即 $$ \dfrac{d}{dt} \dfrac{\partial L(x(t), v(t))}{\partial v} = \dfrac{\partial L(x(t), v(t))}{\partial x} $$ 同理 $$ \frac{d}{d t} q (t) = \frac{d}{d t} x = \frac{\partial H}{\partial p} = v $$ 即 $$ \frac{d}{d t} x (t) = v (t) $$ 必要性:假设满足拉格朗日方程,则由(3)的结论 $$ \frac{\partial H (q (t), p(t))}{\partial q} = - \frac{\partial L}{\partial x} = - \frac{d}{d t} \frac{\partial L}{\partial v} = - \frac{d}{d t} p (t) $$

\[ \frac{\partial H (q (t), p (t))}{\partial p} = v = \frac{d}{d t} x = \frac{d}{d t} q (t) \]

4

\(U, V\)\(\mathbb{R}^n\) 的开集. 已知 \(f : U \rightarrow V\)\(C^1\) 光滑的双射, 且其逆映射 \(f^{-1} : V \rightarrow U\) 是连续的.

(1) 证明: 如果在 \(x_0 \in U\)\(f\) 的雅可比矩阵 \(J_f(x_0)\) 是可逆矩阵. 证明: \(f^{-1}\)\(f(x_0)\) 处可微.

证明

由于\(f : U \rightarrow V\)\(C^1\) 光滑的双射, 所以其逆映射 \(f^{-1} : V \rightarrow U\)\(C^{1}\) 的。

所以 \(f^{-1}\)\(f(x_0)\) 处可微。这样说有点耍赖,我还是把反函数定理里的证明复述一遍吧

作平移以及换元使得\(\bar{f} (0) = \bar{f}^{-1} (0) = 0\)\(J_{\bar{f}} (0) = J_{\bar{f}^{-1}} (0) = I_{d}\)

所以 $$ \bar{f} (u_{0} + h) = \bar{f} (u_{0}) + h + \alpha (h) \qquad \lim_{|h| \to 0} \frac{\alpha (h)}{|h|} = 0 $$

\[ \bar{f}^{-1} (v_{0} + v) = \bar{f}^{-1} (v_{0}) + v + \beta (v) \]

证明 $$ \lim_{|v| \to 0} \frac{\beta (v)}{|v|} = \lim_{|v| \to 0} \frac{\bar{f}^{-1} (v_{0} + v) - \bar{f}^{-1} (v_{0}) - v}{|v|} = 0 $$ 即可

作换元 \(\bar{f} (u_{0}) = v_{0}, \bar{f} (u_{0} + h) = v_{0} + v, \quad h = \bar{f}^{-1} (\bar{f} (u_{0}) + v) - u_{0}\) $$ \lim_{|v| \to 0} \frac{\beta (v)}{|v|} = \lim_{|v| \to 0} \frac{h - v}{|v|} = \lim_{|h| \to 0 } \frac{- \alpha (h)}{|h + \alpha (h)|} = 0 $$ 所以 \(\bar{f}^{-1}\)\(\bar{f}(u_0)\) 处可微,所以 \(f^{-1}\)\(f(x_0)\) 处可微

(2) 假设对任何 \(x \in U\), \(f\) 的雅可比矩阵 \(J_f(x)\) 都是可逆矩阵. 证明: \(f^{-1} : V \rightarrow U\)\(C^1\) 光滑映射

证明

已经证明任何 \(x \in U\), \(f^{-1}\)\(f(x_0)\) 处可微,又因为\(J_f(x)\) 是可逆矩阵,因为\(f : U \rightarrow V\)\(C^1\) 光滑的,所以\(J_{f}\) 的矩阵元都是连续函数

利用链式法则 $$ J_{f^{-1}} (y) = (J_{f} (f^{-1} (y)))^{-1} $$ 由于\(J_f(x)\) 是可逆的所以\(J_{f^{-1}} (y)\) 的矩阵元均连续,所以对任何 \(x \in U\), \(f^{-1}\) 各个分量的偏导均是连续的,所以\(f^{-1} : V \rightarrow U\)\(C^1\) 光滑映射。