跳转至

电动力学 第15周作业

Chasse_neige

1. 运动带电粒子的电磁场

运动带电粒子的描述,推迟效应,李纳-维谢尔势,电磁场,辐射功率及角分布 作业:

(a) 书7.7

7.7 相对论性加速带电粒子的辐射场

(1) 根据相对论协变的力学方程,证明相对论性加速带电荷 \(q\) 的粒子的辐射场公式(1.17)用作用力表示为

\[ \vec{E} = \frac{q}{4\pi \epsilon_0 m c^2 R} \left\{ \frac{\delta^3}{\gamma} \vec{e}_r \times [(\vec{e}_r - \vec{\beta}) \times \vec{F} - (\vec{\beta} \cdot \vec{F})(\vec{e}_r \times \vec{\beta})] \right\}_{\text{ret}} \]

其中 \(\delta = (1 - \vec{\beta} \cdot \vec{e}_r)^{-1}\)\(\text{ret}\) 表示时刻 \(t' = t - \frac{R}{c}\) 时的值。

\[ \vec{E}_{radia} (\vec{r}, t) = \frac{q}{4 \pi \epsilon_{0} S_{ret}^{3}} \left\{ \vec{R} \times ((\vec{R} - R \vec{\beta}) \times \vec{a}) \right\}_{ret} = \frac{q}{4 \pi \epsilon_{0} R} \left\{ \delta^{3} \vec{e}_{r} \times ((\vec{e}_{r} - \vec{\beta}) \times \vec{a}) \right\}_{rev} \]

带入

\[ \vec{F} = \frac{d \vec{p}}{dt} = \gamma m \vec{a} + \gamma^{3} m (\vec{\beta} \cdot \vec{a}) \vec{\beta} \]

所以

\[ \begin{aligned} &\frac{1}{\gamma m} \vec{e}_r \times [(\vec{e}_r - \vec{\beta}) \times \vec{F} - (\vec{\beta} \cdot \vec{F})(\vec{e}_r \times \vec{\beta})] \\\\ &= \vec{e}_{r} \times \left((\vec{e}_{r} - \vec{\beta}) \times (\vec{a} + \gamma^{2} (\vec{\beta} \cdot \vec{a}) \vec{\beta}) - (\vec{\beta} \cdot (\vec{a} + \gamma^{2} (\vec{\beta} \cdot \vec{a}) \vec{\beta})) (\vec{e}_{r} \times \vec{\beta}) \right) \\\\ &= \vec{e}_{r} \times \left( (\vec{e}_{r} - \vec{\beta}) \times \vec{a} - (\vec{\beta} \cdot \vec{a}) (\vec{e}_{r} \times \vec{\beta}) + (\vec{\beta} \cdot \vec{a}) (\vec{e}_{r} \times \vec{\beta})) \right) = \vec{e}_{r} \times ((\vec{e}_{r} - \vec{\beta}) \times \vec{a}) \end{aligned} \]

所以

\[ \begin{aligned} &\frac{q}{4\pi \epsilon_0 m c^2 R} \left\{ \frac{\delta^3}{\gamma} \vec{e}_r \times [(\vec{e}_r - \vec{\beta}) \times \vec{F} - (\vec{\beta} \cdot \vec{F})(\vec{e}_r \times \vec{\beta})] \right\}_{\text{ret}} \\\\ &= \frac{q}{4 \pi \epsilon_{0} R} \left\{ \delta^{3} \vec{e}_{r} \times ((\vec{e}_{r} - \vec{\beta}) \times \vec{a}) \right\}_{rev} = \vec{E}_{radia} \end{aligned} \]

(2) 利用公式 \((\vec{A} \times \vec{B})^2 = \vec{A}^2 \vec{B}^2 - (\vec{A} \cdot \vec{B})^2\),计算 \([(\vec{e}_r - \vec{\beta}) \times \vec{F}]^2\)\([\vec{F} \cdot (\vec{e}_r \times \vec{\beta})]^2\)

\[ \begin{aligned} [(\vec{e}_r - \vec{\beta}) \times \vec{F}]^2 &= (\vec{e}_{r} - \vec{\beta})^{2} F^{2} - ((\vec{e}_{r} - \vec{\beta}) \cdot \vec{F})^{2} \\\\ &= (1 + \beta^{2} - 2 \vec{e}_{r} \cdot \vec{\beta}) F^{2} - (\vec{e}_{r} \cdot \vec{F})^{2} - (\vec{\beta} \cdot \vec{F})^{2} + 2 (\vec{e}_{r} \cdot \vec{F}) (\vec{\beta} \cdot \vec{F}) \end{aligned} \]
\[ \begin{aligned} [\vec{F} \cdot (\vec{e}_r \times \vec{\beta})]^2 &= F^{2} |\vec{e}_{r} \times \vec{\beta}|^{2} - |\vec{F} \times (\vec{e}_{r} \times \vec{\beta})|^{2} = F^{2} (\beta^{2} - (\vec{e}_{r} \cdot \vec{\beta})^{2}) - |(\vec{F} \cdot \vec{\beta}) \vec{e}_{r} - (\vec{F} \cdot \vec{e}_{r}) \vec{\beta}|^{2} \\\\ &= F^{2} (\beta^{2} - (\vec{e}_{r} \cdot \vec{\beta})^{2}) - (\vec{F} \cdot \vec{\beta})^{2} - (\vec{F} \cdot \vec{e}_{r})^{2} \beta^{2} + 2 (\vec{e}_{r} \cdot \vec{F}) (\vec{\beta} \cdot \vec{F}) (\vec{e}_{r} \cdot \vec{\beta}) \end{aligned} \]

(3) 利用上述公式,证明带电粒子的辐射功率的角分布公式(2.5)用作用力表示为

\[ \frac{d P}{d \Omega} = \frac{q^2}{16 \pi^2 \epsilon_0 m^2 c^3} \frac{\delta^3}{\gamma^2} \left[ \vec{F}^2 - (\vec{\beta} \cdot \vec{F})^2 - \frac{\delta^2}{\gamma^2} (\vec{F} \cdot \vec{e}_r - \vec{F} \cdot \vec{\beta})^2 \right] \]

证明

\[ \begin{aligned} \frac{dP}{d \Omega} &= \frac{1}{\mu_{0}} (\vec{E} \times \vec{B}) \cdot \vec{e}_{r} R^{2} \frac{dt}{dt'} = \frac{R^{2}}{\mu_{0} c} |\vec{E}_{radia}|^{2} \delta^{-1} \\\\ &= \frac{q^{2}}{16 \pi^{2} \epsilon_{0} m^{2} c^{3}} \left\{ \frac{\delta^{5}}{\gamma^{2}} \left| \vec{e}_r \times [(\vec{e}_r - \vec{\beta}) \times \vec{F} - (\vec{\beta} \cdot \vec{F})(\vec{e}_r \times \vec{\beta})] \right|^{2} \right\}_{\text{ret}} \\\\ &= \frac{q^{2}}{16 \pi^{2} \epsilon_{0} m^{2} c^{3}} \frac{\delta^{5}}{\gamma^{2}} \left( \left|(\vec{e}_r - \vec{\beta}) \times \vec{F} - (\vec{\beta} \cdot \vec{F})(\vec{e}_r \times \vec{\beta}) \right|^{2} - [\vec{F} \cdot (\vec{e}_r \times \vec{\beta})]^2 \right) \\\\ &= \frac{q^{2}}{16 \pi^{2} \epsilon_{0} m^{2} c^{3}} \frac{\delta^{5}}{\gamma^{2}} ([(\vec{e}_r - \vec{\beta}) \times \vec{F}]^2 + (\vec{\beta} \cdot \vec{F})^{2} (\beta^{2} - (\vec{e}_{r} \cdot \vec{\beta})^{2}) - 2 (\vec{\beta} \cdot \vec{F}) ((\vec{e}_r - \vec{\beta}) \times \vec{F}) \cdot (\vec{e}_{r} \times \vec{\beta}) \\\\ - [\vec{F} \cdot (\vec{e}_r \times \vec{\beta})]^2) \\\\ &= \frac{q^{2}}{16 \pi^{2} \epsilon_{0} m^{2} c^{3}} \frac{\delta^{5}}{\gamma^{2}} \left[ (1 - \vec{e}_{r} \cdot \vec{\beta})^{2} (\vec{F}^2 - (\vec{\beta} \cdot \vec{F})^2) - (1 - \beta^{2}) (\vec{F} \cdot \vec{e}_r - \vec{F} \cdot \vec{\beta})^2 \right] \\\\ &= \frac{q^2}{16 \pi^2 \epsilon_0 m^2 c^3} \frac{\delta^3}{\gamma^2} \left[ \vec{F}^2 - (\vec{\beta} \cdot \vec{F})^2 - \frac{\delta^2}{\gamma^2} (\vec{F} \cdot \vec{e}_r - \vec{F} \cdot \vec{\beta})^2 \right] \end{aligned} \]

(b) 试由定义,\(\frac{1}{J} = \int d^3x' \delta \left( r' - r_0\left(t - \frac{\|r-r'\|}{c}\right) \right)\) 证明:\(J = 1 - \frac{\vec{R}^*}{R^*} \cdot \frac{\vec{v}^*}{c}\)。并讨论 \(J\) 的物理意义。若在介质中,式中 \(c\) 应换为 \(\frac{c}{n}\)\(n\) 为介质的折射率),则 \(J\) 有可能为\(0\),它对应什么物理?

证明,由三维 \(\delta\) 函数的性质

\[ \delta (\vec{r}' - \vec{r}_{0} (t - \frac{|\vec{r} - \vec{r}'|}{c})) = \frac{\delta (\vec{r}')}{\|\nabla' (\vec{r}' - \vec{r}_{0} (t - \frac{|\vec{r} - \vec{r}'|}{c}))\|} \]

所以

\[ J = ||\nabla' (\vec{r}' - \vec{r}_{0} (t - \frac{|\vec{r} - \vec{r}'|}{c}))|| = \left\|\overset{\leftrightarrow}{I} - \frac{\vec{R}^{*} \vec{v}^{*}}{c R^{*}} \right\| \]

利用线性代数中的结论,对于 \(A_{m \times n}\) 以及 \(B_{n \times m}\) 来说

\[ \|I_{m} - AB \| = \|I_{n} - BA \| \]

所以

\[ J = \left\|\overset{\leftrightarrow}{I} - \frac{\vec{R}^{*} \vec{v}^{*}}{c R^{*}} \right\| = 1 - \frac{\vec{R}^*}{R^*} \cdot \frac{\vec{v}^*}{c} \]

当在介质中时

\[ J = 1 - \frac{\vec{R}^*}{R^*} \cdot \frac{n \vec{v}^*}{c} \]

当 $n $ 取值大到 \(J = 0\) 时,也就是粒子运动速度大于介质中光速,此时会发生切连科夫辐射,此时辐射强度集中在 \(\cos \theta = \frac{c}{n v^{*}}\) 处。

(c) 试证任意运动的电磁场为

\[ \vec{E}(\vec{r}, t) = \frac{q}{4\pi\epsilon_0 S^{* 3}} \left( \vec{R}^* - \frac{R^* \vec{v}^*}{c} \right) \left(1 - \frac{v^2}{c^2}\right) + \frac{q}{4\pi\epsilon_0 c^2 S^{* 3}} \vec{R}^* \times \left[ \left( \vec{R}^* - \frac{R^* \vec{v}^*}{c} \right) \times \vec{a}^* \right] \]
\[ \vec{B}(\vec{r}, t) = \frac{\vec{R}^*}{cR^*} \times \vec{E}(\vec{r}, t) \]

证明

注意:一下推导中可以分解算符为

\[ \begin{aligned} \nabla &= \nabla^{*} + \nabla t^{*} \frac{\partial}{\partial t^{*}} \\\\ \frac{\partial}{\partial t} &= \frac{\partial t^{*}}{\partial t} \frac{\partial}{\partial t^{*}} \end{aligned} \]

由推迟时间定义 \(t^* = t - \frac{R^*}{c}\),固定场点 \(\vec{r}\),对 \(t\) 求导:

\[ \frac{\partial t^*}{\partial t} = 1 - \frac{1}{c} \frac{\partial R^*}{\partial t} \]

其中 \(R^* = |\vec{r} - \vec{r}_0(t^*)|\),且:

\[ \frac{\partial R^*}{\partial t} = -\frac{\vec{R}^* \cdot \vec{v}^*}{R^*} \frac{\partial t^*}{\partial t} \]

代入得:

\[ \frac{\partial t^*}{\partial t} = 1 + \frac{\vec{R}^* \cdot \vec{v}^*}{c R^*} \frac{\partial t^*}{\partial t} \implies \frac{\partial t^*}{\partial t} = \frac{R^*}{R^* - \frac{\vec{R}^* \cdot \vec{v}^*}{c}} = \frac{R^*}{S^*} \]

\(\nabla R^*\) \(R^* = |\vec{r} - \vec{r}_0(t^*)|\),固定 \(t\),对 \(\vec{r}\) 求梯度:

\[ \nabla R^* = \frac{\vec{R}^*}{R^*} - \frac{\vec{R}^* \cdot \vec{v}^*}{R^*} \nabla t^* \]

代入 \(\nabla t^* = -\frac{1}{c} \nabla R^*\)

\[ \nabla R^* = \frac{\vec{R}^*}{R^*} + \frac{\vec{R}^* \cdot \vec{v}^*}{c R^*} \nabla R^* \implies \nabla R^* = \frac{\frac{\vec{R}^*}{R^*}}{1 - \frac{\vec{R}^* \cdot \vec{v}^*}{c R^*}} = \frac{\vec{R}^*}{S^*} \]

\(\nabla t^*\)\(t^* = t - \frac{R^*}{c}\) 得:

\[ \nabla t^* = -\frac{1}{c} \nabla R^* = -\frac{1}{c} \frac{\vec{R}^*}{S^*} \]

综上所述

\[ \begin{aligned} \nabla R^{*} &= \frac{\vec{R}^{*}}{S^{*}} \\\\ \nabla t^{*} &= - \frac{1}{c} \frac{\vec{R}^{*}}{S^{*}} \\\\ \frac{\partial R^{*}}{\partial t} &= - \frac{\vec{R}^{*} \cdot \vec{v}^{*}}{S^{*}} \\\\ \frac{\partial t^{*}}{\partial t} &= \frac{R^{*}}{S^{*}} \end{aligned} \]

所以由李纳维谢尔势

\[ \phi(\vec{r}, t) = \frac{q}{4\pi\epsilon_0} \frac{1}{S^*} \]
\[ \vec{A}(\vec{r}, t) = \frac{\mu_0 q}{4\pi} \frac{\vec{v}^*}{S^*} \]
\[ \vec{E} = -\nabla \phi - \frac{\partial \vec{A}}{\partial t} \]

\(-\nabla \phi\) \(\phi = \frac{q}{4\pi\epsilon_0} (S^*)^{-1}\),先求 \(\nabla S^*\)

\[ \nabla S^* = \nabla R^* - \frac{1}{c} \nabla (\vec{R}^* \cdot \vec{v}^*) = \frac{\vec{R}^*}{S^*} - \frac{\vec{v}^*}{c} + \frac{1}{c^2} (\vec{R}^* \cdot \vec{a}^* - v^{*2}) \frac{\vec{R}^*}{S^*} \]

故:

\[ -\nabla \phi = \frac{q}{4\pi\epsilon_0} \frac{1}{(S^*)^2} \left[ \frac{\vec{R}^*}{S^*} - \frac{\vec{v}^*}{c} + \frac{1}{c^2} (\vec{R}^* \cdot \vec{a}^* - v^{*2}) \frac{\vec{R}^*}{S^*} \right] \]

\(-\frac{\partial \vec{A}}{\partial t}\) \(\vec{A} = \frac{\mu_0 q}{4\pi} \frac{\vec{v}^*}{S^*}\),计算得:

\[ -\frac{\partial \vec{A}}{\partial t} = -\frac{q}{4\pi\epsilon_0 c^2} \frac{1}{(S^*)^2} \frac{R^*}{S^*} \left[ \vec{a}^* + \frac{\vec{v}^* (\vec{R}^* \cdot \vec{v}^*)}{(R^*)^2} - \frac{v^{*2}}{c} \frac{\vec{v}^*}{R^*} + \frac{\vec{v}^* (\vec{R}^* \cdot \vec{a}^*)}{c R^*} \right] \]

自场项:

\[ \vec{E}_{\text{self}} = \frac{q}{4\pi\epsilon_0 S^{*3}} \left( \vec{R}^* - \frac{R^* \vec{v}^*}{c} \right) \left(1 - \frac{v^{2}}{c^2}\right) \]

辐射项:

\[ \vec{E}_{\text{radia}} = \frac{q}{4\pi\epsilon_0 c^2 S^{*3}} \vec{R}^* \times \left[ \left( \vec{R}^* - \frac{R^* \vec{v}^*}{c} \right) \times \vec{a}^* \right] \]

总电场:

\[ \vec{E}(\vec{r}, t) = \vec{E}_{\text{vel}} + \vec{E}_{\text{acc}} = \frac{q}{4\pi\epsilon_0 S^{* 3}} \left( \vec{R}^* - \frac{R^* \vec{v}^*}{c} \right) \left(1 - \frac{v^2}{c^2}\right) + \frac{q}{4\pi\epsilon_0 c^2 S^{* 3}} \vec{R}^* \times \left[ \left( \vec{R}^* - \frac{R^* \vec{v}^*}{c} \right) \times \vec{a}^* \right] \]

磁场:

\[ \begin{aligned} \vec{B}(\vec{r}, t) &= \nabla \times \vec{A} = \nabla^{*} \times \vec{A} + (\nabla t^{*}) \times \frac{\partial \vec{A}}{\partial t^{*}} = \nabla^{*} \times (\vec{v}^{*} \frac{\phi}{c^{2}}) + \frac{\partial t}{\partial t^{*}} (\nabla t^{*}) \times \frac{\partial \vec{A}}{\partial t} \\\\ &= (\nabla^{*} \phi) \times \frac{\vec{v}^{*}}{c^{2}} - \frac{\vec{R}^{*}}{c R^{*}} \times \frac{\partial \vec{A}}{\partial t} \end{aligned} \]
\[ \nabla^{*} \phi = \nabla^{*} \frac{q}{4\pi\epsilon_0} \frac{1}{S^*} = - \frac{q}{4\pi\epsilon_0 S^{2*}} \nabla^{*} (R^{*} - \frac{\vec{R}^{*} \cdot \vec{v}^{*}}{c}) = - \frac{q}{4\pi\epsilon_0 S^{2*}} (\frac{\vec{R}^{*}}{R^{*}} - \frac{\vec{v}^{*}}{c}) \]

所以

\[ (\nabla^{*} \phi) \times \frac{\vec{v}^{*}}{c^{2}} = - \frac{q}{4\pi\epsilon_0 S^{2*}} \frac{\vec{R}^{*}}{R^{*}} \times \frac{\vec{v}^{*}}{c^{2}} = - \frac{\vec{R}^{*}}{cR^{*}} \times \frac{q \vec{v}^{*}}{4 \pi \epsilon_{0} c S^{2*}} = \frac{\vec{R}^{*}}{c R^{*}} \times (- \nabla \phi) \]

所以

\[ \vec{B} = \frac{\vec{R}^{*}}{c R^{*}} \times (- \nabla \phi - \frac{\partial \vec{A}}{\partial t}) = \frac{\vec{R}^{*}}{c R^{*}} \times \vec{E} \]

(d) 书7.1, 7.3, 7.4

7.1 电子的速度与加速度的夹角

电子的速度 \(v\) 与加速度 \(\dot{v}\) 的夹角为 \(\alpha\),证明 \(v\)\(\dot{v}\) 平面内与 \(\dot{v}\) 的夹角为 \(\beta\) 的方向上无辐射,\(\beta\) 由以下方程决定:

\[ \sin \beta = \frac{v}{c} \sin \alpha \]

证明

\[ \frac{d P}{d \Omega} (t') = \frac{q^{2}}{16 \pi^{2} \epsilon_{0} c^{3}} \frac{|\vec{e}_{r} \times ((\vec{e}_{r} - \vec{\beta}) \times \vec{a})|^{2}}{(1 - \vec{e}_{r} \cdot \vec{\beta})^{5}} \]
\[ \vec{e}_{r} \times ((\vec{e}_{r} - \vec{\beta}) \times \vec{a}) = (\vec{e}_{r} \cdot \vec{a}) (\vec{e}_{r} - \vec{\beta}) - (1 - \vec{e}_{r} \cdot \vec{\beta}) \vec{a} \]

没有辐射的方向满足

\[ \begin{aligned} (\vec{e}_{r} \cdot \vec{a}) (\vec{e}_{r} - \vec{\beta}) &= (1 - \vec{e}_{r} \cdot \vec{\beta}) \vec{a} \\\\ (\vec{e}_{r} \cdot \vec{a}) (\vec{e}_{r} \cdot \vec{a} - \vec{\beta} \cdot \vec{a}) &= (1 - \vec{e}_{r} \cdot \vec{\beta}) a^{2} \end{aligned} \]

假设 \(\vec{e}_{r}\)\(\vec{a}\) 的夹角为 \(\beta\) ,切该夹角的正方向与 \(\alpha\) 定义相同

\[ \cos \beta (\cos \beta - \frac{v}{c} \cos \alpha) = 1 - \frac{v}{c} \cos (\beta - \alpha) \]
\[ \cos^{2} \beta - \frac{v}{c} \cos \beta \cos \alpha = 1 - \frac{v}{c} (\cos \beta \cos \alpha + \sin \beta \sin \alpha) \]
\[ \cos^{2} \beta = 1 - \frac{v}{c} \sin \beta \sin \alpha \]
\[ \frac{v}{c} \sin \beta \sin \alpha = \sin^{2} \beta \]
\[ \sin \beta = \frac{v}{c} \sin \alpha \]

7.3 带电粒子的简谐振动

有一带电荷 \(q\) 的粒子沿 \(z\) 轴作简谐振动 \(z = z_0 e^{- i\omega t}\)。设 \(z_0 \omega \ll c\),求: (1) 它的辐射场和能流

利用偶极辐射的结论,假设场点和 \(z\) 轴的夹角为 \(\theta\)

\[ \vec{E} \approx \frac{q}{4 \pi \epsilon_{0} c^{2} R} (\vec{e}_{r} \times (\vec{e}_{r} \times \vec{a})) \]

其中 \(R\)\(a\) 均为推迟时间时的结果。由于场点和粒子距离 \(R >> z_{0}\) ,所以在远场处推迟时间可以近似为 \(\frac{R}{c}\)

\[ \begin{aligned} \vec{E} \approx \frac{q}{4 \pi \epsilon_{0} c^{2} R} (\vec{e}_{r} \times (\vec{e}_{r} \times \vec{a})) &= \frac{q}{4 \pi \epsilon_{0} c^{2} R} (- \omega^{2} z_{0} e^{- i \omega (t - \frac{R}{c})}) (\vec{e}_{r} \times (\vec{e}_{r} \times \vec{e}_{z})) \\\\ &= - \frac{\omega^{2} q z_{0} \sin \theta}{4 \pi \epsilon_{0} c^{2} R} e^{i \omega (\frac{R}{c} - t)} \vec{e}_{\theta} \end{aligned} \]
\[ \vec{B} \approx \frac{\vec{e}_{r}}{c} \times \vec{E} = - \frac{\omega^{2} q z_{0} \sin \theta}{4 \pi \epsilon_{0} c^{3} R} e^{i \omega (\frac{R}{c} - t)} \vec{e}_{\phi} \]
\[ <\vec{S}> = \frac{1}{2 \mu_{0}} \vec{E} \times \vec{B}^{*} = \frac{\omega^{4} \mu_{0} q^{2} z_{0}^{2} \sin^{2} \theta}{32 \pi^{2} c R^{2}} \vec{e}_{r} \]

(2) 它的自场,比较两者的不同

自场

\[ \vec{E} \approx \frac{q}{ 4 \pi \epsilon_{0} R^{3}} \vec{R} \]
\[ \vec{B} \approx \frac{\mu_{0} q}{4 \pi R^{3}} (\vec{v} \times \vec{R}) \]

区别在于在远场处自场是近似不变的,而辐射场会随时间波动,并且辐射场在远处的能流积分不会衰减,而自场在远处无法产生明显效果

7.4 带电粒子的匀速率圆周运动

带电荷 \(q\) 的粒子在 \(xy\) 平面上绕 \(z\) 轴作匀速率圆周运动,角频率为 \(\omega\),半径 \(R_0\)。设 \(\omega R_0 \ll c\),试计算辐射场的频率和能流密度,讨论 \(\theta = 0, \frac{\pi}{4}, \frac{\pi}{2}\)\(\pi\) 处电磁场的偏振。

假设电子运动方程为 (取场点方向在 \(x-y\) 平面上的投影为 \(x\) 轴正方向)

\[ \vec{r} (t) = (R_{0} \cos \omega t, R_{0} \sin \omega t) \]
\[ \vec{v} = (- \omega R_{0} \sin \omega t, \omega R_{0} \cos \omega t) \]
\[ \vec{a} = (- \omega^{2} R_{0} \cos \omega t, - \omega^{2} R_{0} \sin \omega t) = - \omega^{2} R_{0} \cos \theta \cos \omega t \vec{e}_{r} - \omega^{2} R_{0} \sin \theta \cos \omega t \vec{e}_{\theta} - \omega^{2} R_{0} \sin \omega t \vec{e}_{\phi} \]

所以在远场近似下

\[ \begin{aligned} \vec{E}_{radia} &= \frac{q}{4 \pi \epsilon_{0} c^{2} R} (\vec{e}_{r} \times (\vec{e}_{r} \times \vec{a})) = \frac{q}{4 \pi \epsilon_{0} c^{2} R} (\vec{e}_{r} \times (- \omega^{2} R_{0 }\cos \theta \cos \omega (t - \frac{R}{c}) \vec{e}_{\phi} + \omega^{2} R_{0} \sin \omega (t - \frac{R}{c} ) \vec{e}_{\theta})) \\\\ &= \frac{q \omega^{2} R_{0}}{4 \pi \epsilon_{0} c^{2} R} (\cos \theta \cos \omega (t - \frac{R}{c}) \vec{e}_{\theta} + \sin \omega (t - \frac{R}{c}) \vec{e}_{\phi}) = \frac{q R_0 \omega^2}{4\pi \epsilon_0 c^2 R} (\cos \theta \vec{e}_\theta + i \vec{e}_\phi) e^{i\left(\frac{\omega R - \omega t }{c}\right)} \end{aligned} \]
\[ \vec{B}_{radia} = \frac{\vec{e}_{r}}{c} \times \vec{E}_{radia} = \frac{q R_0 \omega^2}{4\pi \epsilon_0 c^3 R} (-i \vec{e}_\theta + \cos \theta \vec{e}_\phi) e^{i\left(\frac{\omega R - \omega t}{c}\right)} \]
\[ <\vec{S}> = \frac{1}{2 \mu_{0}} \vec{E} \times \vec{B}^{*} = \frac{q^{2} R_{0}^{2} \omega^{4}}{32 \pi^{2} \epsilon_{0} c^{3} R^{2}} (\cos^{2} \theta + 1) \vec{e}_{r} \]

\(\theta = 0, \pi\) 时, 辐射为圆偏振

\(\theta = \frac{\pi}{2}\) 时,辐射为线偏振

其余情况为椭圆偏振 (\(\theta = \frac{\pi}{4}\)

4. 带电粒子的电磁场对粒子本身的反作用

能量转化与守恒定律,牛顿定律,电子的经典运动方程,电磁质量,辐射阻尼力,谱线的自然宽度

作业:书7.9

7.9 带电粒子在磁场中的辐射

一个质量为 \(m\),电荷为 \(q\) 的粒子在一个平面上运动,该平面垂直于均匀静磁场 \(\vec{B}\)。 (1) 计算辐射功率,用 \(m, q, B, \gamma\) 表示 (\(E = \gamma m c^2\))

角频率

\[ q v B = \gamma m v \omega \]
\[ \omega = \frac{q B}{\gamma m} \]

回旋半径

\[ R_{0} = \frac{v}{\omega} = \frac{m c}{q B} \sqrt{\gamma^{2} - 1} \]

再推导相对论情形下的辐射功率表达式

\[ \vec{E} = \frac{q}{4 \pi \epsilon_{0} c^{2} R (1 - \frac{\vec{v} \cdot \vec{R} }{c R})^{3}} (\vec{e}_{r} \times ((\vec{e}_{r} - \frac{\vec{v}}{c}) \times \vec{a}))) \]
\[ \vec{a} = (- \omega^{2} R_{0} \cos \omega t, - \omega^{2} R_{0} \sin \omega t) = - \omega^{2} R_{0} \cos \theta \cos \omega t \vec{e}_{r} - \omega^{2} R_{0} \sin \theta \cos \omega t \vec{e}_{\theta} - \omega^{2} R_{0} \sin \omega t \vec{e}_{\phi} \]

带入 $\vec{v} \cdot \vec{a} = 0 $ 时的辐射功率公式

\[ P = \frac{q^{2} a^{2}}{6 \pi \epsilon_{0} c^{3}} \gamma^{4} = \frac{q^{2} \omega^{4} R_{0}^{2}}{6 \pi \epsilon_{0} c^{3}} \gamma^{4} = \frac{B^{2} q^{4}}{6 \pi \epsilon_{0} m^{2} c} (\gamma^{2} - 1) \]

(2) 若在 \(t = t_0\) 时,\(E_0 = \gamma_0 m c^2\),求 \(E(t)\)

\[ \frac{d E}{dt} = - \frac{B^2 q^4}{6 \pi \epsilon_0 m^2 c} (\frac{E^{2}}{m^{2} c^{4}} - 1) \]
\[ \frac{d E}{E^{2} - m^{2} c^{4}} = - \frac{B^2 q^4}{6 \pi \epsilon_0 m^{4} c^{5}} dt \]
\[ \int_{\gamma_{0} m c^{2}}^{E} \frac{d E}{E - m c^{2}} - \frac{d E}{E + m c^{2}} = \int_{t_{0}}^{t} - \frac{B^2 q^4}{3 \pi \epsilon_0 m^{3} c^{3}} dt \]
\[ E (t) = m c^{2} \left( \frac{1 + \frac{\gamma_0 - 1}{\gamma_0 + 1} e^{-\frac{B^2 q^4}{3 \pi \epsilon_0 m^{3} c^{3}} (t - t_{0})}}{1 - \frac{\gamma_0 - 1}{\gamma_0 + 1} e^{-\frac{B^2 q^4}{3 \pi \epsilon_0 m^{3} c^{3}} (t - t_{0})}} \right) \]

(3) 若初始时刻粒子为非相对论性的,其动能为 \(T_0\),求时刻 \(t\) 的粒子动能 \(T\)

非相对论时

\[ P \approx \frac{q^{4} B^{2}}{6 \pi \epsilon_{0} c^{3} m^{2}} v^{2} = \frac{q^{4} B^{2}}{3 \pi \epsilon_{0} c^{3} m^{3}} T \]
\[ \frac{d T}{dt} = - \frac{q^{4} B^{2}}{3 \pi \epsilon_{0} c^{3} m^{3}} T \]
\[ \int_{T_{0}}^{T} \frac{d T}{T} = \int_{0}^{t} - \frac{q^{4} B^{2}}{3 \pi \epsilon_{0} c^{3} m^{3}} dt \]
\[ T (t) = T_0 e^{ -\frac{B^2 q^4}{3 \pi \epsilon_0 m^3 c^3} (t - t_0) } \]

5. 电磁波的散射与吸收,介质的色散

自由电子对电磁波的散射,束缚电子对电磁波的散射,介质的色散,因果性与色散关系

作业:书7.5, 7.6, 7.8

7.5 带电谐振子在磁场中的运动

设有一各向同性的带电谐振子(无外场时粒子受弹性恢复力 \(-m \omega_0^2 \vec{r}\) 作用),处于均匀恒定外磁场 \(\vec{B}\) 中,假设粒子速度 \(v \ll c\) 及辐射阻尼力可以忽略,求: (1) 振子运动的通解

在非相对论情形下

\[ \vec{f} = - m \omega_{0}^{2} \vec{r} + q \vec{v} \times \vec{B} = m \vec{a} \]
\[ \begin{aligned} m \ddot{x} &= - m \omega_{0}^{2} x + q B\dot{y} \\\\ m \ddot{y} &= - m \omega_{0}^{2} y - q B \dot{x} \\\\ m \ddot{z} &= - m \omega_{0}^{2} z \end{aligned} \]

采取复数法求解 ( \(z = x + iy\)

\[ \ddot{z} = - \omega_{0}^{2} z - i 2\omega_{B} \dot{z} \]

其中 \(\omega_{B} = \frac{q B}{2m}\)

方程通解为

\[ z = A e^{i (\sqrt{\omega_{0}^{2} + \omega_{B}^{2}} - \omega_{0}) t} + B e^{ - i (\sqrt{\omega_{0}^{2} + \omega_{B}^{2}} + \omega_{0}) t} \]

所以振子运动的通解为

\[ \vec{r} (t) = A (\hat{x} - i \hat{y}) e^{- i (-\sqrt{\omega_{0}^{2} + \omega_{B}^{2}} + \omega_{0}) t} + B (\hat{x} + i \hat{y}) e^{ - i (\sqrt{\omega_{0}^{2} + \omega_{B}^{2}} + \omega_{0}) t} + C \hat{z} e^{- i \omega_{0} t} \]

(2) 利用上题结果,讨论沿磁场方向和垂直于磁场方向上辐射场的频率和偏振。

沿着磁场方向:因为 \(z\) 方向振动平行于 \(\vec{e}_{r}\) ,所以不会产生辐射场

利用7.4 的结果,可以把振动分解为频率为 \(- \omega_{0} + \sqrt{\omega_{0}^{2} + \omega_{B}^{2}}\)\(\omega_{0} + \sqrt{\omega_{0}^{2} + \omega_{B}^{{2}}}\) 的叠加,并且二者均为圆偏振,其中前者是左旋,后者是右旋

垂直磁场方向:此时在垂直于 \(\vec{e}_{r}\) 的平面内振动的投影可以分解为

\(z\) 方向的频率为 \(\omega_{0}\) 的以及原来 \(x- y\) 平面内频率为 \(\omega_{0} - \sqrt{\omega_{0}^{2} + \omega_{B}^{2}}\)\(\omega_{0} + \sqrt{\omega_{0}^{2} + \omega_{B}^{{2}}}\) 的叠加。三者均为线偏振,并且频率为 \(\omega_{0}\) 的波的偏振方向与频率为 \(\omega_{0} - \sqrt{\omega_{0}^{2} + \omega_{B}^{2}}\)\(\omega_{0} + \sqrt{\omega_{0}^{2} + \omega_{B}^{{2}}}\) 的波是垂直的。

7.6 电子在均匀磁场中的运动

设电子在均匀外磁场 \(\vec{B}_0\) 中运动,取磁场 \(\vec{B}\) 的方向为 \(z\) 轴方向,已知 \(t = 0\) 时,\(x = R_0\)\(y = z = 0\)\(\dot{x} = \dot{z} = 0\)\(\dot{y} = v_0\),设非相对论条件满足,求: (1) 考虑辐射阻尼力的电子运动轨道

对于题示这种准周期运动,可以采取平均辐射阻尼力 \(\frac{e^{2}}{6 \pi \epsilon_{0} c^{3}} \dot{\vec{a}}\)

此时运动方程变为

\[ \begin{aligned} \ddot{x} &= \omega_{0} \dot{y} + \frac{\gamma}{\omega_{0}^{2}} \dddot{x} \\\\ \ddot{y} &= - \omega_{0} \dot{x} + \frac{\gamma}{\omega_{0}^{2}} \dddot{y} \end{aligned} \]

其中 \(\omega_{0} = \frac{q B}{m}, \gamma = \frac{e^{2} \omega_{0}^{2}}{6 \pi \epsilon_{0} m c^{3}}\)

同样采取复数法求解,令 \(z = x + iy\)

\[ \ddot{z} = - i \omega_{0} \dot{z} + \frac{\gamma}{\omega_{0}^{2}} \dddot{z} \]

特征方程

\[ \frac{\gamma}{\omega_{0}^{2}} \lambda^{2} - \lambda - i \omega_{0} = 0 \]
\[ \lambda = \frac{\omega_{0}^{2} \pm \omega_{0}^{2} \sqrt{1 + i 4 \frac{\gamma}{\omega_{0}}}}{2 \gamma} \]

由于 \(\gamma << 1\) ,所以

\[ \lambda \approx \frac{\omega_{0}^{2} - \omega_{0}^{2} (1 + i 2 \frac{\gamma}{\omega_{0}} + 2 \frac{\gamma^{2}}{\omega_{0}^{2}})}{2 \gamma} = - i \omega_{0} - \gamma \]

所以带入初始条件,得到运动轨迹为

\[ \begin{aligned} &x \approx \left( R_0 - \frac{v_0}{\omega_0} \right) + \frac{v_0}{\omega_0} e^{-\gamma t} \cos \omega_0 t \\\\ y \approx \frac{v_0}{\omega_0} e^{-\gamma t} \sin \omega_0 t \end{aligned} \]

(2) 电子单位时间内的辐射能量

单位时间内,带入运动方向与加速度方向垂直的结论

\[ P (t) = \frac{e^{2}}{6 \pi \epsilon_{0} c^{3}} a^{2} = \frac{e^{2}}{6 \pi \epsilon_{0} c^{3}} \omega_{0}^{2} v_{0}^{2} e^{- 2 \gamma t} \]

7.8 等离子体折射率

应用 §6 中导出介质色散的方法,推导等离子体折射率的公式(见第四章(9.29)式)

假设等离子体中单位体积的正负电荷数密度为 \(N\) ,在打入电磁波 \(\vec{E} = \vec{E}_{0} e^{-i \omega t}\) 时,电子运动方程可以写作

\[ \ddot{\vec{r}} = - \frac{e \vec{E}_{0}}{m} e^{- i \omega t} \]

所以稳定时

\[ \vec{r} = \frac{e \vec{E}_{0}}{m \omega^{2}} e^{- i \omega t} \]

极化强度

\[ \vec{P} = - \frac{N e^{2} \vec{E}_{0}}{m \omega^{2}} e^{- i \omega t} \]
\[ \epsilon_{r} = 1 - \frac{N e^{2}}{m \epsilon_{0} \omega^{2}} \]
\[ n(\omega) = \sqrt{1 - \frac{N e^2}{\epsilon_0 m \omega^2}} \]